Проектирование первичной сети связи на железнодорожном участке

Транспорт » Проектирование первичной сети связи на железнодорожном участке

Основу телефонной связи относят к 1876 году, когда американец А.Г. Белл изобрел телефон и представил его в виде трубки, внутри которой помещался отрицательный стержневой магнит с обмоткой, и перед его полюсом размещалась тонкая железная пластинка – МЕМБРАНА. Для двухсторонней передачи надо было две таких трубки. Данная конструкция не обеспечивает передачу информации на большие расстояния.

вентилятор для фермы.

В 1879 году русский инженер М.К. Махальский сконструировал угольный стержневой микрофон, который затем был продемонстрирован П.М. Голубицким. Основными элементами этого микрофона были: корпус, камера с угольным порошком, неподвижный электрод, подвижная мембрана.

Для работы микрофона к нему подключали батарею, за счет чего и происходило преобразование звука в электрический сигнал. Дальнейшее усовершенствование конструкции микрофона и схем телефонной связи обусловило создание схем местной и центральной батарей. А дальнейшее развитие телефонии и заинтересованность в этом правительства привели к созданию коммутационных установок, которые соединяли между собой абонентов.

Ученые связисты постоянно выдвигали идеи автоматизации процесса соединения на телефонных станциях. И первые такие станции появились 1895-1896 годах с применением щеточных искателей. Основная идея этого принадлежит англичанину А.Б. Строуджеру, который изобрел шаговый искатель, и в 1892 году в США появилась первая АТС шаговой системы, которая была построена на базе электромеханических коммутационных приборов.

Основными недостатками этих приборов являлись:

Сложность конструкции искателей и их низкая надежность.

Большие эксплуатационные расходы, связанные с постоянным дежурством обслуживающего персонала.

Низкая скорость установления соединений

Высокие помехи вследствие искрения контактов при работе искателей.

Второе поколение АТС – это координатные АТС - АТСК. В них стали применять более надежные, быстродействующие коммутационные приборы МКС (многократные координатные соединители), что позволило реализовать принцип централизации управления процессов коммутации на базе не индивидуальных, а групповых устройств, что позволило создать наиболее экономичные и надежные АТС, сократить эксплуатационные расходы и осуществить постепенный переход на электронные АТС, так как электроника к этому времени получает бурное развитие, и появляются быстродействующие электромагнитные приборы – ГЕРКОНЫ, ФЕРРИДЫ и т.д.

В то же время получило развитие ЭВМ (электро-вычислительные машины), что в свою очередь позволило осуществлять программное управление процессами коммутации, и то есть появились АТС третьего поколения – Электронные АТС.

Квазиэлектронные АТС – АТСКЭ, явились четвертым поколением АТС. Это были АТС, которые в основе коммутации использовали микроэлектронику и контактные приборы герконы. В результате чего повысилась надежность АТС, уменьшились габариты, сократились эксплуатационные расходы и появились дополнительные виды обслуживания - ДВО.

Пятым поколением АТС явились цифровые АТС – АТСЦ. В них все коммутационные приборы выполнены на основе электронных приборов, но прорывом коммутационной техники с появлением этих АТС является то, что появились новые методы коммутации каналов. До этого был только пространственный метод коммутации каналов, а теперь появились методы:

частотной коммутации

Временной коммутации

Пространственно-временной коммутации.

И, следовательно, постепенно был осуществлен переход на, так называемые, цифровые АТС.

АТСЦ позволили существенно изменить не только коммутационное поле, но и управляющее оборудование станций. Вместо сложных ЭВМ появились более простые микропроцессоры, за счет которых получает распространение не централизованное, а децентрализованное программное управление. И важным преимуществом АТСЦ является то, что они позволили выполнять многие функции коммутации, как, например:

- уплотнение (выделять Е0, Е1),

- функции диспетчерского управления (проводить конференцсвязи),

- а так же значительно сократились габариты, появилась возможность наращивать емкость при незначительном увеличении габаритов.

И, в принципе, почти отсутствуют эксплуатационные расходы, так как они надежны в работе и не требуют постоянного контроля за их работой. А за счет передачи информации в цифровом виде увеличивается качество передачи информации.

Стало возможным преобразование цифрового сигнала в оптический, и передача этого сигнала по волоконно-оптическому кабелю, который преобладает рядом преимуществ перед медно-жильным кабелем.

В настоящее время на ведомственных телефонных сетях МПС широко внедряются цифровые АТС как отечественного, так и зарубежного производства. Цифровые АТС имеют варьируемую в широких пределах легко наращиваемую емкость, от малых АТС, до 50 номеров, до крупных АТС и УАК, емкостью, свыше 2000 номеров. Современные цифровые АТС имеют сегодня возможность реализации функций ISDN, которые в будущем должны найти свое применение на железнодорожном транспорте. Кроме того цифровые АТС отличаются высокой надежностью и меньшими эксплуатационными затратами по сравнению с аналоговыми АТС предыдущих поколений.

Навигация